Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Breaking Character: Are Subwords Good Enough for MRLs After All? (2204.04748v1)

Published 10 Apr 2022 in cs.CL

Abstract: Large pretrained LLMs (PLMs) typically tokenize the input string into contiguous subwords before any pretraining or inference. However, previous studies have claimed that this form of subword tokenization is inadequate for processing morphologically-rich languages (MRLs). We revisit this hypothesis by pretraining a BERT-style masked LLM over character sequences instead of word-pieces. We compare the resulting model, dubbed TavBERT, against contemporary PLMs based on subwords for three highly complex and ambiguous MRLs (Hebrew, Turkish, and Arabic), testing them on both morphological and semantic tasks. Our results show, for all tested languages, that while TavBERT obtains mild improvements on surface-level tasks `a la POS tagging and full morphological disambiguation, subword-based PLMs achieve significantly higher performance on semantic tasks, such as named entity recognition and extractive question answering. These results showcase and (re)confirm the potential of subword tokenization as a reasonable modeling assumption for many languages, including MRLs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube