Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention (2204.04601v1)

Published 10 Apr 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Interpretability is an important property for visual models as it helps researchers and users understand the internal mechanism of a complex model. However, generating semantic explanations about the learned representation is challenging without direct supervision to produce such explanations. We propose a general framework, Latent Visual Semantic Explainer (LaViSE), to teach any existing convolutional neural network to generate text descriptions about its own latent representations at the filter level. Our method constructs a mapping between the visual and semantic spaces using generic image datasets, using images and category names. It then transfers the mapping to the target domain which does not have semantic labels. The proposed framework employs a modular structure and enables to analyze any trained network whether or not its original training data is available. We show that our method can generate novel descriptions for learned filters beyond the set of categories defined in the training dataset and perform an extensive evaluation on multiple datasets. We also demonstrate a novel application of our method for unsupervised dataset bias analysis which allows us to automatically discover hidden biases in datasets or compare different subsets without using additional labels. The dataset and code are made public to facilitate further research.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.