Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fast metric embedding into the Hamming cube (2204.04109v3)

Published 8 Apr 2022 in math.PR, cs.IT, and math.IT

Abstract: We consider the problem of embedding a subset of $\mathbb{R}n$ into a low-dimensional Hamming cube in an almost isometric way. We construct a simple, data-oblivious, and computationally efficient map that achieves this task with high probability: we first apply a specific structured random matrix, which we call the double circulant matrix; using that matrix requires linear storage and matrix-vector multiplication can be performed in near-linear time. We then binarize each vector by comparing each of its entries to a random threshold, selected uniformly at random from a well-chosen interval. We estimate the number of bits required for this encoding scheme in terms of two natural geometric complexity parameters of the set - its Euclidean covering numbers and its localized Gaussian complexity. The estimate we derive turns out to be the best that one can hope for - up to logarithmic terms. The key to the proof is a phenomenon of independent interest: we show that the double circulant matrix mimics the behavior of a Gaussian matrix in two important ways. First, it maps an arbitrary set in $\mathbb{R}n$ into a set of well-spread vectors. Second, it yields a fast near-isometric embedding of any finite subset of $\ell_2n$ into $\ell_1m$. This embedding achieves the same dimension reduction as a Gaussian matrix in near-linear time, under an optimal condition - up to logarithmic factors - on the number of points to be embedded. This improves a well-known construction due to Ailon and Chazelle.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.