Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CD$^2$-pFed: Cyclic Distillation-guided Channel Decoupling for Model Personalization in Federated Learning (2204.03880v1)

Published 8 Apr 2022 in cs.CV and cs.LG

Abstract: Federated learning (FL) is a distributed learning paradigm that enables multiple clients to collaboratively learn a shared global model. Despite the recent progress, it remains challenging to deal with heterogeneous data clients, as the discrepant data distributions usually prevent the global model from delivering good generalization ability on each participating client. In this paper, we propose CD2-pFed, a novel Cyclic Distillation-guided Channel Decoupling framework, to personalize the global model in FL, under various settings of data heterogeneity. Different from previous works which establish layer-wise personalization to overcome the non-IID data across different clients, we make the first attempt at channel-wise assignment for model personalization, referred to as channel decoupling. To further facilitate the collaboration between private and shared weights, we propose a novel cyclic distillation scheme to impose a consistent regularization between the local and global model representations during the federation. Guided by the cyclical distillation, our channel decoupling framework can deliver more accurate and generalized results for different kinds of heterogeneity, such as feature skew, label distribution skew, and concept shift. Comprehensive experiments on four benchmarks, including natural image and medical image analysis tasks, demonstrate the consistent effectiveness of our method on both local and external validations.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube