Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Resource Consumption for Supporting Federated Learning in Wireless Networks (2204.03850v1)

Published 8 Apr 2022 in cs.NI

Abstract: Federated learning (FL) has recently become one of the hottest focuses in wireless edge networks with the ever-increasing computing capability of user equipment (UE). In FL, UEs train local machine learning models and transmit them to an aggregator, where a global model is formed and then sent back to UEs. In wireless networks, local training and model transmission can be unsuccessful due to constrained computing resources, wireless channel impairments, bandwidth limitations, etc., which degrades FL performance in model accuracy and/or training time. Moreover, we need to quantify the benefits and cost of deploying edge intelligence, as model training and transmission consume certain amount of resources. Therefore, it is imperative to deeply understand the relationship between FL performance and multiple-dimensional resources. In this paper, we construct an analytical model to investigate the relationship between the FL model accuracy and consumed resources in FL empowered wireless edge networks. Based on the analytical model, we explicitly quantify the model accuracy, available computing resources and communication resources. Numerical results validate the effectiveness of our theoretical modeling and analysis, and demonstrate the trade-off between the communication and computing resources for achieving a certain model accuracy.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.