Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Walk Autonomously via Reset-Free Quality-Diversity (2204.03655v1)

Published 7 Apr 2022 in cs.LG, cs.AI, cs.NE, and cs.RO

Abstract: Quality-Diversity (QD) algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills. However, the generation of behavioural repertoires has mainly been limited to simulation environments instead of real-world learning. This is because existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions. This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments. We build on Dynamics-Aware Quality-Diversity (DA-QD) and introduce a behaviour selection policy that leverages the diversity of the imagined repertoire and environmental information to intelligently select of behaviours that can act as automatic resets. We demonstrate this through a task of learning to walk within defined training zones with obstacles. Our experiments show that we can learn full repertoires of legged locomotion controllers autonomously without manual resets with high sample efficiency in spite of harsh safety constraints. Finally, using an ablation of different target objectives, we show that it is important for RF-QD to have diverse types solutions available for the behaviour selection policy over solutions optimised with a specific objective. Videos and code available at https://sites.google.com/view/rf-qd.

Citations (7)

Summary

We haven't generated a summary for this paper yet.