Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RF Signal Transformation and Classification using Deep Neural Networks (2204.03564v1)

Published 6 Apr 2022 in eess.SP and cs.LG

Abstract: Deep neural networks (DNNs) designed for computer vision and natural language processing tasks cannot be directly applied to the radio frequency (RF) datasets. To address this challenge, we propose to convert the raw RF data to data types that are suitable for off-the-shelf DNNs by introducing a convolutional transform technique. In addition, we propose a simple 5-layer convolutional neural network architecture (CONV-5) that can operate with raw RF I/Q data without any transformation. Further, we put forward an RF dataset, referred to as RF1024, to facilitate future RF research. RF1024 consists of 8 different RF modulation classes with each class having 1000/200 training/test samples. Each sample of the RF1024 dataset contains 1024 complex I/Q values. Lastly, the experiments are performed on the RadioML2016 and RF1024 datasets to demonstrate the improved classification performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.