Papers
Topics
Authors
Recent
2000 character limit reached

Visualizing Deep Neural Networks with Topographic Activation Maps (2204.03528v2)

Published 7 Apr 2022 in cs.LG, cs.CV, cs.HC, and stat.ML

Abstract: Machine Learning with Deep Neural Networks (DNNs) has become a successful tool in solving tasks across various fields of application. However, the complexity of DNNs makes it difficult to understand how they solve their learned task. To improve the explainability of DNNs, we adapt methods from neuroscience that analyze complex and opaque systems. Here, we draw inspiration from how neuroscience uses topographic maps to visualize brain activity. To also visualize activations of neurons in DNNs as topographic maps, we research techniques to layout the neurons in a two-dimensional space such that neurons of similar activity are in the vicinity of each other. In this work, we introduce and compare methods to obtain a topographic layout of neurons in a DNN layer. Moreover, we demonstrate how to use topographic activation maps to identify errors or encoded biases and to visualize training processes. Our novel visualization technique improves the transparency of DNN-based decision-making systems and is interpretable without expert knowledge in Machine Learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.