Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tencent Text-Video Retrieval: Hierarchical Cross-Modal Interactions with Multi-Level Representations (2204.03382v8)

Published 7 Apr 2022 in cs.CV

Abstract: Text-Video Retrieval plays an important role in multi-modal understanding and has attracted increasing attention in recent years. Most existing methods focus on constructing contrastive pairs between whole videos and complete caption sentences, while overlooking fine-grained cross-modal relationships, e.g., clip-phrase or frame-word. In this paper, we propose a novel method, named Hierarchical Cross-Modal Interaction (HCMI), to explore multi-level cross-modal relationships among video-sentence, clip-phrase, and frame-word for text-video retrieval. Considering intrinsic semantic frame relations, HCMI performs self-attention to explore frame-level correlations and adaptively cluster correlated frames into clip-level and video-level representations. In this way, HCMI constructs multi-level video representations for frame-clip-video granularities to capture fine-grained video content, and multi-level text representations at word-phrase-sentence granularities for the text modality. With multi-level representations for video and text, hierarchical contrastive learning is designed to explore fine-grained cross-modal relationships, i.e., frame-word, clip-phrase, and video-sentence, which enables HCMI to achieve a comprehensive semantic comparison between video and text modalities. Further boosted by adaptive label denoising and marginal sample enhancement, HCMI achieves new state-of-the-art results on various benchmarks, e.g., Rank@1 of 55.0%, 58.2%, 29.7%, 52.1%, and 57.3% on MSR-VTT, MSVD, LSMDC, DiDemo, and ActivityNet, respectively.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.