Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Korean Online Hate Speech Dataset for Multilabel Classification: How Can Social Science Improve Dataset on Hate Speech? (2204.03262v2)

Published 7 Apr 2022 in cs.CL and cs.CY

Abstract: We suggest a multilabel Korean online hate speech dataset that covers seven categories of hate speech: (1) Race and Nationality, (2) Religion, (3) Regionalism, (4) Ageism, (5) Misogyny, (6) Sexual Minorities, and (7) Male. Our 35K dataset consists of 24K online comments with Krippendorff's Alpha label accordance of .713, 2.2K neutral sentences from Wikipedia, 1.7K additionally labeled sentences generated by the Human-in-the-Loop procedure and rule-generated 7.1K neutral sentences. The base model with 24K initial dataset achieved the accuracy of LRAP .892, but improved to .919 after being combined with 11K additional data. Unlike the conventional binary hate and non-hate dichotomy approach, we designed a dataset considering both the cultural and linguistic context to overcome the limitations of western culture-based English texts. Thus, this paper is not only limited to presenting a local hate speech dataset but extends as a manual for building a more generalized hate speech dataset with diverse cultural backgrounds based on social science perspectives.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.