Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations (2204.03246v1)

Published 7 Apr 2022 in math.NA and cs.NA

Abstract: This paper analyzes a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the $\mathcal{P}{k}/\mathcal{P}{k-1}$ $(k\geq1)$ discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, and piecewise $\mathcal{P}k/\mathcal{P}{k}$ for the trace approximations of the velocity and pressure on the inter-element boundaries. It is shown that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.

Citations (3)

Summary

We haven't generated a summary for this paper yet.