Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning to Solve Travelling Salesman Problem with Hardness-adaptive Curriculum (2204.03236v1)

Published 7 Apr 2022 in cs.LG and cs.AI

Abstract: Various neural network models have been proposed to tackle combinatorial optimization problems such as the travelling salesman problem (TSP). Existing learning-based TSP methods adopt a simple setting that the training and testing data are independent and identically distributed. However, the existing literature fails to solve TSP instances when training and testing data have different distributions. Concretely, we find that different training and testing distribution will result in more difficult TSP instances, i.e., the solution obtained by the model has a large gap from the optimal solution. To tackle this problem, in this work, we study learning-based TSP methods when training and testing data have different distributions using adaptive-hardness, i.e., how difficult a TSP instance can be for a solver. This problem is challenging because it is non-trivial to (1) define hardness measurement quantitatively; (2) efficiently and continuously generate sufficiently hard TSP instances upon model training; (3) fully utilize instances with different levels of hardness to learn a more powerful TSP solver. To solve these challenges, we first propose a principled hardness measurement to quantify the hardness of TSP instances. Then, we propose a hardness-adaptive generator to generate instances with different hardness. We further propose a curriculum learner fully utilizing these instances to train the TSP solver. Experiments show that our hardness-adaptive generator can generate instances ten times harder than the existing methods, and our proposed method achieves significant improvement over state-of-the-art models in terms of the optimality gap.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.