Papers
Topics
Authors
Recent
2000 character limit reached

Deep transfer learning for system identification using long short-term memory neural networks (2204.03125v1)

Published 6 Apr 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Recurrent neural networks (RNNs) have many advantages over more traditional system identification techniques. They may be applied to linear and nonlinear systems, and they require fewer modeling assumptions. However, these neural network models may also need larger amounts of data to learn and generalize. Furthermore, neural networks training is a time-consuming process. Hence, building upon long-short term memory neural networks (LSTM), this paper proposes using two types of deep transfer learning, namely parameter fine-tuning and freezing, to reduce the data and computation requirements for system identification. We apply these techniques to identify two dynamical systems, namely a second-order linear system and a Wiener-Hammerstein nonlinear system. Results show that compared with direct learning, our method accelerates learning by 10% to 50%, which also saves data and computing resources.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.