Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors (2204.03039v3)

Published 6 Apr 2022 in cs.CV

Abstract: Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors. We first revisit the prior stereo detector DSGN for its stereo volume construction ways for representing both 3D geometry and semantics. We polish the stereo modeling and propose the advanced version, DSGN++, aiming to enhance effective information flow throughout the 2D-to-3D pipeline in three main aspects. First, to effectively lift the 2D information to stereo volume, we propose depth-wise plane sweeping (DPS) that allows denser connections and extracts depth-guided features. Second, for grasping differently spaced features, we present a novel stereo volume -- Dual-view Stereo Volume (DSV) that integrates front-view and top-view features and reconstructs sub-voxel depth in the camera frustum. Third, as the foreground region becomes less dominant in 3D space, we propose a multi-modal data editing strategy -- Stereo-LiDAR Copy-Paste, which ensures cross-modal alignment and improves data efficiency. Without bells and whistles, extensive experiments in various modality setups on the popular KITTI benchmark show that our method consistently outperforms other camera-based 3D detectors for all categories. Code is available at https://github.com/chenyilun95/DSGN2.

Citations (21)

Summary

We haven't generated a summary for this paper yet.