Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DiffSearch: A Scalable and Precise Search Engine for Code Changes (2204.02787v2)

Published 6 Apr 2022 in cs.SE

Abstract: The source code of successful projects is evolving all the time, resulting in hundreds of thousands of code changes stored in source code repositories. This wealth of data can be useful, e.g., to find changes similar to a planned code change or examples of recurring code improvements. This paper presents DiffSearch, a search engine that, given a query that describes a code change, returns a set of changes that match the query. The approach is enabled by three key contributions. First, we present a query language that extends the underlying programming language with wildcards and placeholders, providing an intuitive way of formulating queries that is easy to adapt to different programming languages. Second, to ensure scalability, the approach indexes code changes in a one-time preprocessing step, mapping them into a feature space, and then performs an efficient search in the feature space for each query. Third, to guarantee precision, i.e., that any returned code change indeed matches the given query, we present a tree-based matching algorithm that checks whether a query can be expanded to a concrete code change. We present implementations for Java, JavaScript, and Python, and show that the approach responds within seconds to queries across one million code changes, has a recall of 80.7% for Java, 89.6% for Python, and 90.4% for JavaScript, enables users to find relevant code changes more effectively than a regular expression-based search, and is helpful for gathering a large-scale dataset of real-world bug fixes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube