Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MM-SEAL: A Large-scale Video Dataset of Multi-person Multi-grained Spatio-temporally Action Localization (2204.02688v2)

Published 6 Apr 2022 in cs.CV

Abstract: In this paper, we introduce a novel large-scale video dataset dubbed MM-SEAL for multi-person multi-grained spatio-temporal action localization among human daily life. We are the first to propose a new benchmark for multi-person spatio-temporal complex activity localization, where complex semantic and long duration bring new challenges to localization tasks. We observe that limited atomic actions can be combined into many complex activities. MM-SEAL provides both atomic action and complex activity annotations, producing 111.7k atomic actions spanning 172 action categories and 17.7k complex activities spanning 200 activity categories. We explore the relationship between atomic actions and complex activities, finding that atomic action features can improve the complex activity localization performance. Also, we propose a new network which generates temporal proposals and labels simultaneously, termed Faster-TAD. Finally, our evaluations show that visual features pretrained on MM-SEAL can improve the performance on other action localization benchmarks. We will release the dataset and the project code upon publication of the paper.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.