Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interactive Evolutionary Multi-Objective Optimization via Learning-to-Rank (2204.02604v1)

Published 6 Apr 2022 in cs.NE

Abstract: In practical multi-criterion decision-making, it is cumbersome if a decision maker (DM) is asked to choose among a set of trade-off alternatives covering the whole Pareto-optimal front. This is a paradox in conventional evolutionary multi-objective optimization (EMO) that always aim to achieve a well balance between convergence and diversity. In essence, the ultimate goal of multi-objective optimization is to help a decision maker (DM) identify solution(s) of interest (SOI) achieving satisfactory trade-offs among multiple conflicting criteria. Bearing this in mind, this paper develops a framework for designing preference-based EMO algorithms to find SOI in an interactive manner. Its core idea is to involve human in the loop of EMO. After every several iterations, the DM is invited to elicit her feedback with regard to a couple of incumbent candidates. By collecting such information, her preference is progressively learned by a learning-to-rank neural network and then applied to guide the baseline EMO algorithm. Note that this framework is so general that any existing EMO algorithm can be applied in a plug-in manner. Experiments on $48$ benchmark test problems with up to 10 objectives fully demonstrate the effectiveness of our proposed algorithms for finding SOI.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)