Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech (2204.02172v2)

Published 5 Apr 2022 in cs.SD and eess.AS

Abstract: To simplify the generation process, several text-to-speech (TTS) systems implicitly learn intermediate latent representations instead of relying on predefined features (e.g., mel-spectrogram). However, their generation quality is unsatisfactory as these representations lack speech variances. In this paper, we improve TTS performance by adding \emph{prosody embeddings} to the latent representations. During training, we extract reference prosody embeddings from mel-spectrograms, and during inference, we estimate these embeddings from text using generative adversarial networks (GANs). Using GANs, we reliably estimate the prosody embeddings in a fast way, which have complex distributions due to the dynamic nature of speech. We also show that the prosody embeddings work as efficient features for learning a robust alignment between text and acoustic features. Our proposed model surpasses several publicly available models with less parameters and computational complexity in comparative experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.