Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploring the influence of fine-tuning data on wav2vec 2.0 model for blind speech quality prediction (2204.02135v1)

Published 5 Apr 2022 in eess.AS

Abstract: Recent studies have shown how self-supervised models can produce accurate speech quality predictions. Speech representations generated by the pre-trained wav2vec 2.0 model allows constructing robust predicting models using small amounts of annotated data. This opens the possibility of developing strong models in scenarios where labelled data is scarce. It is known that fine-tuning improves the model's performance; however, it is unclear how the data (e.g., language, amount of samples) used for fine-tuning is influencing that performance. In this paper, we explore how using different speech corpus to fine-tune the wav2vec 2.0 can influence its performance. We took four speech datasets containing degradations found in common conferencing applications and fine-tuned wav2vec 2.0 targeting different languages and data size scenarios. The fine-tuned models were tested across all four conferencing datasets plus an additional dataset containing synthetic speech and they were compared against three external baseline models. Results showed that fine-tuned models were able to compete with baseline models. Larger fine-tune data guarantee better performance; meanwhile, diversity in language helped the models deal with specific languages. Further research is needed to evaluate other wav2vec 2.0 models pre-trained with multi-lingual datasets and to develop prediction models that are more resilient to language diversity.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.