Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automating Reinforcement Learning with Example-based Resets (2204.02041v2)

Published 5 Apr 2022 in cs.LG and cs.RO

Abstract: Deep reinforcement learning has enabled robots to learn motor skills from environmental interactions with minimal to no prior knowledge. However, existing reinforcement learning algorithms assume an episodic setting, in which the agent resets to a fixed initial state distribution at the end of each episode, to successfully train the agents from repeated trials. Such reset mechanism, while trivial for simulated tasks, can be challenging to provide for real-world robotics tasks. Resets in robotic systems often require extensive human supervision and task-specific workarounds, which contradicts the goal of autonomous robot learning. In this paper, we propose an extension to conventional reinforcement learning towards greater autonomy by introducing an additional agent that learns to reset in a self-supervised manner. The reset agent preemptively triggers a reset to prevent manual resets and implicitly imposes a curriculum for the forward agent. We apply our method to learn from scratch on a suite of simulated and real-world continuous control tasks and demonstrate that the reset agent successfully learns to reduce manual resets whilst also allowing the forward policy to improve gradually over time.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.