Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Complementary Joint Training Approach Using Unpaired Speech and Text for Low-Resource Automatic Speech Recognition (2204.02023v1)

Published 5 Apr 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Unpaired data has shown to be beneficial for low-resource automatic speech recognition~(ASR), which can be involved in the design of hybrid models with multi-task training or LLM dependent pre-training. In this work, we leverage unpaired data to train a general sequence-to-sequence model. Unpaired speech and text are used in the form of data pairs by generating the corresponding missing parts in prior to model training. Inspired by the complementarity of speech-PseudoLabel pair and SynthesizedAudio-text pair in both acoustic features and linguistic features, we propose a complementary joint training~(CJT) method that trains a model alternatively with two data pairs. Furthermore, label masking for pseudo-labels and gradient restriction for synthesized audio are proposed to further cope with the deviations from real data, termed as CJT++. Experimental results show that compared to speech-only training, the proposed basic CJT achieves great performance improvements on clean/other test sets, and the CJT++ re-training yields further performance enhancements. It is also apparent that the proposed method outperforms the wav2vec2.0 model with the same model size and beam size, particularly in extreme low-resource cases.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.