Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Video Salient Object Detection Progressively from Unlabeled Videos (2204.02008v1)

Published 5 Apr 2022 in cs.CV

Abstract: Recent deep learning-based video salient object detection (VSOD) has achieved some breakthrough, but these methods rely on expensive annotated videos with pixel-wise annotations, weak annotations, or part of the pixel-wise annotations. In this paper, based on the similarities and the differences between VSOD and image salient object detection (SOD), we propose a novel VSOD method via a progressive framework that locates and segments salient objects in sequence without utilizing any video annotation. To use the knowledge learned in the SOD dataset for VSOD efficiently, we introduce dynamic saliency to compensate for the lack of motion information of SOD during the locating process but retain the same fine segmenting process. Specifically, an algorithm for generating spatiotemporal location labels, which consists of generating high-saliency location labels and tracking salient objects in adjacent frames, is proposed. Based on these location labels, a two-stream locating network that introduces an optical flow branch for video salient object locating is presented. Although our method does not require labeled video at all, the experimental results on five public benchmarks of DAVIS, FBMS, ViSal, VOS, and DAVSOD demonstrate that our proposed method is competitive with fully supervised methods and outperforms the state-of-the-art weakly and unsupervised methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.