Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Unsupervised Data Selection via Discrete Speech Representation for ASR (2204.01981v1)

Published 5 Apr 2022 in eess.AS

Abstract: Self-supervised learning of speech representations has achieved impressive results in improving automatic speech recognition (ASR). In this paper, we show that data selection is important for self-supervised learning. We propose a simple and effective unsupervised data selection method which selects acoustically similar speech to a target domain. It takes the discrete speech representation available in common self-supervised learning frameworks as input, and applies a contrastive data selection method on the discrete tokens. Through extensive empirical studies we show that our proposed method reduces the amount of required pre-training data and improves the downstream ASR performance. Pre-training on a selected subset of 6% of the general data pool results in 11.8% relative improvements in LibriSpeech test-other compared to pre-training on the full set. On Multilingual LibriSpeech French, German, and Spanish test sets, selecting 6% data for pre-training reduces word error rate by more than 15% relatively compared to the full set, and achieves competitive results compared to current state-of-the-art performances.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.