Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction (2204.01455v1)

Published 4 Apr 2022 in eess.SY and cs.SY

Abstract: In this paper, we present a methodology for actuator and sensor fault estimation in nonlinear systems. The method consists in augmenting the system dynamics with an approximated ultra-local model (a finite chain of integrators) for the fault vector and constructing a Nonlinear Unknown Input Observer (NUIO) for the augmented dynamics. Then, fault reconstruction is reformulated as a robust state estimation problem in the augmented state (true state plus fault-related state). We provide sufficient conditions that guarantee the existence of the observer and stability of the estimation error dynamics (asymptotic stability of the origin in the absence of faults and ISS guarantees in the faulty case). Then, we cast the synthesis of observer gains as a semidefinite program where we minimize the L2-gain from the model mismatch induced by the approximated fault model to the fault estimation error. Finally, simulations are given to illustrate the performance of the proposed methodology.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.