Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Ordinal Problems: Optimality of Comparison-based Algorithms and their Cardinal Complexity (2204.01418v3)

Published 4 Apr 2022 in cs.DS

Abstract: We consider ordinal online problems, i.e., tasks that only require pairwise comparisons between elements of the input. A classic example is the secretary problem and the game of googol, as well as its multiple combinatorial extensions such as $(J,K)$-secretary, $2$-sided game of googol, ordinal-competitive matroid secretary. A natural approach to these tasks is to use ordinal algorithms that at each step only consider relative ranking among the arrived elements, without looking at the numerical values of the input. We formally study the question of how cardinal algorithms can improve upon ordinal algorithms. We give first a universal construction of the input distribution for any ordinal online problem, such that the advantage of any cardinal algorithm over the ordinal algorithms is at most $1+\varepsilon$ for arbitrary small $\varepsilon> 0$. As an implication, previous lower bounds for the aforementioned variants of secretary problems hold not only against ordinal algorithms, but also against any online algorithm. However, the value range of the input elements in our construction is huge: $N=O\left(\frac{n3\cdot n!\cdot n!}{\varepsilon}\right)\uparrow\uparrow(n-1)$ (tower of exponents) for an input sequence of length $n$. As a second result, we identify a class of natural ordinal problems and find cardinal algorithm with a matching advantage of $1+ \Omega \left(\frac{1}{\log{(c)}N}\right),$ where $\log{(c)}N=\log\ldots\log N$ with $c$ iterative logs and $c$ is an arbitrary constant. Further, we introduce the cardinal complexity for any given ordinal online task: the minimum size $N(\varepsilon)$ of different numerical values in the input such the advantage of cardinal over ordinal algorithms is at most $1+\varepsilon$. As a third result, we show that the game of googol has much lower cardinal complexity of $N=O\left(\left(\frac{n}{\varepsilon}\right)n\right)$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube