Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Safe Controller for Output Feedback Linear Systems using Model-Based Reinforcement Learning (2204.01409v1)

Published 4 Apr 2022 in eess.SY and cs.SY

Abstract: The objective of this research is to enable safety-critical systems to simultaneously learn and execute optimal control policies in a safe manner to achieve complex autonomy. Learning optimal policies via trial and error, i.e., traditional reinforcement learning, is difficult to implement in safety-critical systems, particularly when task restarts are unavailable. Safe model-based reinforcement learning techniques based on a barrier transformation have recently been developed to address this problem. However, these methods rely on full state feedback, limiting their usability in a real-world environment. In this work, an output-feedback safe model-based reinforcement learning technique based on a novel barrier-aware dynamic state estimator has been designed to address this issue. The developed approach facilitates simultaneous learning and execution of safe control policies for safety-critical linear systems. Simulation results indicate that barrier transformation is an effective approach to achieve online reinforcement learning in safety-critical systems using output feedback.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube