Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Linear Representations of Nonlinear Dynamics Using Deep Learning (2204.01064v1)

Published 3 Apr 2022 in eess.SY, cs.CE, and cs.SY

Abstract: The vast majority of systems of practical interest are characterised by nonlinear dynamics. This renders the control and optimization of such systems a complex task due to their nonlinear behaviour. Additionally, standard methods such as linearizing around a fixed point may not be an effective strategy for many systems, thus requiring an alternative approach. For this reason, we propose a new deep learning framework to discover a transformation of a nonlinear dynamical system to an equivalent higher dimensional linear representation. We demonstrate that the resulting learned linear representation accurately captures the dynamics of the original system for a wider range of conditions than standard linearization. As a result of this, we show that the learned linear model can subsequently be used for the successful control of the original system. We demonstrate this by applying the proposed framework to two examples; one from the literature and a more complex example in the form of a Continuous Stirred Tank Reactor (CSTR).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube