Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distortion-Aware Self-Supervised 360° Depth Estimation from A Single Equirectangular Projection Image (2204.01027v1)

Published 3 Apr 2022 in cs.CV

Abstract: 360{\deg} images are widely available over the last few years. This paper proposes a new technique for single 360{\deg} image depth prediction under open environments. Depth prediction from a 360{\deg} single image is not easy for two reasons. One is the limitation of supervision datasets - the currently available dataset is limited to indoor scenes. The other is the problems caused by Equirectangular Projection Format (ERP), commonly used for 360{\deg} images, that are coordinate and distortion. There is only one method existing that uses cube map projection to produce six perspective images and apply self-supervised learning using motion pictures for perspective depth prediction to deal with these problems. Different from the existing method, we directly use the ERP format. We propose a framework of direct use of ERP with coordinate conversion of correspondences and distortion-aware upsampling module to deal with the ERP related problems and extend a self-supervised learning method for open environments. For the experiments, we firstly built a dataset for the evaluation, and quantitatively evaluate the depth prediction in outdoor scenes. We show that it outperforms the state-of-the-art technique

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.