Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Sparse Tensor-based Point Cloud Attribute Compression (2204.01023v1)

Published 3 Apr 2022 in eess.IV

Abstract: Recently, numerous learning-based compression methods have been developed with outstanding performance for the coding of the geometry information of point clouds. On the contrary, limited explorations have been devoted to point cloud attribute compression (PCAC). Thus, this study focuses on the PCAC by applying sparse convolution because of its superior efficiency for representing the geometry of unorganized points. The proposed method simply stacks sparse convolutions to construct the variational autoencoder (VAE) framework to compress the color attributes of a given point cloud. To better encode latent elements at the bottleneck, we apply the adaptive entropy model with the joint utilization of hyper prior and autoregressive neighbors to accurately estimate the bit rate. The qualitative measurement of the proposed method already rivals the latest G-PCC (or TMC13) version 14 at a similar bit rate. And, our method shows clear quantitative improvements to G-PCC version 6, and largely outperforms existing learning-based methods, which promises encouraging potentials for learnt PCAC.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.