Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gastrointestinal Polyps and Tumors Detection Based on Multi-scale Feature-fusion with WCE Sequences (2204.01012v1)

Published 3 Apr 2022 in eess.IV and cs.CV

Abstract: Wireless Capsule Endoscopy(WCE) has been widely used for the screening of gastrointestinal(GI) diseases, especially the small intestine, due to its advantages of non-invasive and painless imaging of the entire digestive tract.However, the huge amount of image data captured by WCE makes manual reading a process that requires a huge amount of tasks and can easily lead to missed detection and false detection of lesions.Therefore, In this paper, we propose a \textbf{T}wo-stage \textbf{M}ulti-scale \textbf{F}eature-fusion learning network(\textbf{TMFNet}) to automatically detect small intestinal polyps and tumors in WCE image sequences. Specifically, TMFNet consists of lesion detection network and lesion identification network. Among them, the former improves the feature extraction module and detection module based on the traditional Faster R-CNN network, and readjusts the parameters of the anchor in the region proposal network(RPN) module;the latter combines residual structure and feature pyramid structure are used to build a small intestinal lesion recognition network based on feature fusion, for reducing the false positive rate of the former and improve the overall accuracy.We used 22,335 WCE images in the experiment, with a total of 123,092 lesion regions used to train the detection framework of this paper. In the experiment, the detection framework is trained and tested on the real WCE image dataset provided by the hospital gastroenterology department. The sensitivity, false positive and accuracy of the final model on the RPM are 98.81$\%$, 7.43$\%$ and 92.57$\%$, respectively.Meanwhile,the corresponding results on the lesion images were 98.75$\%$, 5.62$\%$ and 94.39$\%$. The algorithm model proposed in this paper is obviously superior to other detection algorithms in detection effect and performance

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.