Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FedGBF: An efficient vertical federated learning framework via gradient boosting and bagging (2204.00976v1)

Published 3 Apr 2022 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Federated learning, conducive to solving data privacy and security problems, has attracted increasing attention recently. However, the existing federated boosting model sequentially builds a decision tree model with the weak base learner, resulting in redundant boosting steps and high interactive communication costs. In contrast, the federated bagging model saves time by building multi-decision trees in parallel, but it suffers from performance loss. With the aim of obtaining an outstanding performance with less time cost, we propose a novel model in a vertically federated setting termed as Federated Gradient Boosting Forest (FedGBF). FedGBF simultaneously integrates the boosting and bagging's preponderance by building the decision trees in parallel as a base learner for boosting. Subsequent to FedGBF, the problem of hyperparameters tuning is rising. Then we propose the Dynamic FedGBF, which dynamically changes each forest's parameters and thus reduces the complexity. Finally, the experiments based on the benchmark datasets demonstrate the superiority of our method.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube