Two-sided cartesian fibrations of synthetic $(\infty,1)$-categories (2204.00938v3)
Abstract: Within the framework of Riehl-Shulman's synthetic $(\infty,1)$-category theory, we present a theory of two-sided cartesian fibrations. Central results are several characterizations of the two-sidedness condition `{a} la Chevalley, Gray, Street, and Riehl-Verity, a two-sided Yoneda Lemma, as well as the proof of several closure properties. Along the way, we also define and investigate a notion of fibered or sliced fibration which is used later to develop the two-sided case in a modular fashion. We also briefly discuss discrete two-sided cartesian fibrations in this setting, corresponding to $(\infty,1)$-distributors. The systematics of our definitions and results closely follows Riehl-Verity's $\infty$-cosmos theory, but formulated internally to Riehl-Shulman's simplicial extension of homotopy type theory. All the constructions and proofs in this framework are by design invariant under homotopy equivalence. Semantically, the synthetic $(\infty,1)$-categories correspond to internal $(\infty,1)$-categories implemented as Rezk objects in an arbitrary given $(\infty,1)$-topos.
- Benedikt Ahrens, Krzysztof Kapulkin and Michael Shulman “Univalent categories and the Rezk completion” In Math. Struct. Comput. Sci. 25.5, 2015, pp. 1010–1039 DOI: 10.1017/S0960129514000486
- “The Univalence Principle” arXiv, 2021 DOI: 10.48550/ARXIV.2102.06275
- Benedikt Ahrens, Paige Randall North and Niels Weide “Bicategorical type theory: semantics and syntax” In Mathematical Structures in Computer Science 33.10, 2023, pp. 868–912 DOI: 10.1017/S0960129523000312
- “Two-Level Type Theory and Applications”, 2019 arXiv: https://arxiv.org/abs/1705.03307
- Steve Awodey “Type theory and homotopy” arXiv, 2010 DOI: 10.48550/ARXIV.1010.1810
- Steve Awodey and Michael A. Warren “Homotopy theoretic models of identity types” In Mathematical Proceedings of the Cambridge Philosophical Society 146.1 Cambridge University Press, 2009, pp. 45–55 DOI: 10.1017/S0305004108001783
- “Fibrations of ∞\infty∞-categories” In Higher Structures 4.1, 2020 URL: http://journals.mq.edu.au/index.php/higher_structures/article/view/29
- Igor Bakovic “Fibrations of bicategories” In Preprint available at http://www. irb. hr/korisnici/ibakovic/groth2fib. pdf, 2011
- César Bardomiano Martínez “Limits and exponentiable functors in simplicial homotopy type theory”, 2022 arXiv:2202.12386 [math.CT]
- “Parametrized higher category theory and higher algebra: Exposé I – Elements of parametrized higher category theory”, 2016 arXiv: https://arxiv.org/abs/1608.03657
- “Fibrations in ∞\infty∞-category theory” In 2016 MATRIX annals Cham: Springer, 2018, pp. 17–42 DOI: 10.1007/978-3-319-72299-3˙2
- Jean Bénabou “Distributors at Work” Notes from lectures at TU Darmstadt taken by Thomas Streicher, 2000 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
- Jean Bénabou “Les distributeurs, Rapport 33, 1973, Inst. de Math” In Pure et Appl. Univ. Cath. Louvain la Neuve
- David Li-Bland “The stack of higher internal categories and stacks of iterated spans”, 2015 arXiv: https://arxiv.org/abs/1506.08870
- Pedro Boavida de Brito “Segal objects and the Grothendieck construction” In An alpine bouquet of algebraic topology 708, Contemp. Math. Amer. Math. Soc., [Providence], RI, 2018, pp. 19–44 DOI: 10.1090/conm/708/14271
- Francis Borceux “Handbook of Categorical Algebra: Volume 2, Categories and Structures” Cambridge University Press, 1994
- Ulrik Buchholtz “Higher Structures in Homotopy Type Theory” In Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts Cham: Springer International Publishing, 2019, pp. 151–172 DOI: 10.1007/978-3-030-15655-8˙7
- “Synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-category theory” In Higher Structures 7, 2023, pp. 74–165 DOI: 10.21136/HS.2023.04
- Paolo Capriotti “Models of Type Theory with Strict Equality”, 2016 URL: http://arxiv.org/abs/1702.04912
- “Univalent Higher Categories via Complete Semi-Segal Types” In Proc. ACM Program. Lang. 2.POPL New York, NY, USA: Association for Computing Machinery, 2017 DOI: 10.1145/3158132
- Evan Cavallo, Emily Riehl and Christian Sattler “On the directed univalence axiom” Talk at AMS Special Session on Homotopy Type Theory, Joint Mathematics Meething, San Diego, 2018 URL: http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
- “Fibered aspects of Yoneda’s regular span” In Advances in Mathematics 360, 2020, pp. 106899 DOI: https://doi.org/10.1016/j.aim.2019.106899
- Denis-Charles Cisinski “Higher Categories and Homotopical Algebra”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2019 DOI: 10.1017/9781108588737
- Denis-Charles Cisinski “Univalent universes for elegant models of homotopy types”, 2014 arXiv: https://arxiv.org/pdf/1406.0058.pdf
- Denis-Charles Cisinski and Hoang Kim Nguyen “The universal coCartesian fibration”, 2022 arXiv:2210.08945 [math.CT]
- Maria Manuel Clementino and Fernando Lucatelli Nunes “Lax comma 2222-categories and admissible 2222-functors”, 2020 arXiv: https://arxiv.org/abs/2002.03132
- “Cubical Type Theory: a constructive interpretation of the univalence axiom” In 21st International Conference on Types for Proofs and Programs (TYPES 2015), LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018 DOI: 10.4230/LIPIcs.TYPES.2015.5
- G.S.H. Cruttwell and Michael A. Shulman “A unified framework for generalized multicategories” In Theory Appl. Categ. 24, 2010, pp. No. 21\bibrangessep580–655
- Ivan Di Liberti and Fosco Loregian “On the unicity of formal category theories” In arXiv preprint arXiv:1901.01594, 2019
- Imma Gálvez-Carrillo, Joachim Kock and Andrew Tonks “Decomposition spaces and restriction species” In International Mathematics Research Notices 2020.21 Oxford University Press, 2020, pp. 7558–7616
- David Gepner, Rune Haugseng and Thomas Nikolaus “Lax Colimits and Free Fibrations in ∞\infty∞-Categories” In Doc. Math. 22, 2017, pp. 1225–1266 DOI: 10.25537/dm.2017v22.1225-1266
- John W. Gray “Fibred and Cofibred Categories” In Proceedings of the Conference on Categorical Algebra Berlin, Heidelberg: Springer Berlin Heidelberg, 1966, pp. 21–83 DOI: https://doi.org/10.1007/978-3-642-99902-4˙2
- Daniel Grayson “An introduction to univalent foundations for mathematicians” In Bulletin of the American Mathematical Society 55.4 American Mathematical Society (AMS), 2018, pp. 427–450 DOI: 10.1090/bull/1616
- Rune Haugseng “The higher Morita category of 𝔼nsubscript𝔼𝑛\mathbb{E}_{n}blackboard_E start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-algebras” In Geometry & Topology 21.3 Mathematical Sciences Publishers, 2017, pp. 1631–1730
- “Two-variable fibrations, factorisation systems and-categories of spans” In Forum of Mathematics, Sigma 11, 2023, pp. e111 Cambridge University Press
- Claudio Hermida “On fibred adjunctions and completeness for fibred categories” In Recent Trends in Data Type Specification Springer, 1992, pp. 235–251 DOI: 10.1007/3-540-57867-6˙14
- “The groupoid model refutes uniqueness of identity proofs” In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, 1994, pp. 208–212 DOI: 10.1109/LICS.1994.316071
- “Lifting Grothendieck universes” In Unpublished note, 199? URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
- André Joyal “Notes on quasi-categories”, 2008 URL: http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
- André Joyal “Quasi-categories and Kan complexes” Special volume celebrating the 70th birthday of Professor Max Kelly In J. Pure Appl. Algebra 175.1-3, 2002, pp. 207–222 DOI: 10.1016/S0022-4049(02)00135-4
- Krzysztof Kapulkin and Peter LeFanu Lumsdaine “The simplicial model of Univalent Foundations (after Voevodsky)” In Journal of the European Mathematical Society 23.6, 2021, pp. 2071–2126
- Alex Kavvos “A Quantum of Direction” preprint, 2019 URL: https://www.lambdabetaeta.eu/papers/meio.pdf
- “Local fibred right adjoints are polynomial” In Math. Struct. Comput. Sci. 23.1 Cambridge University Press, 2013, pp. 131–141 DOI: 10.1017/S0960129512000217
- Nikolai Kudasov “Rzk” An experimental proof assistant based on a type theory for synthetic ∞\infty∞-categories URL: https://github.com/rzk-lang/rzk
- Nikolai Kudasov, Emily Riehl and Jonathan Weinberger “Formalizing the ∞\infty∞-Categorical Yoneda Lemma” In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs, 2024, pp. 274–290
- Daniel R. Licata and Robert Harper “2-dimensional directed type theory” In Twenty-Seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII) 276, Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam, 2011, pp. 263–289 DOI: 10.1016/j.entcs.2011.09.026
- “Categorical notions of fibration” In Expo. Math. 38.4, 2020, pp. 496–514 DOI: 10.1016/j.exmath.2019.02.004
- Jacob Lurie “Higher Algebra” https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017
- Jacob Lurie “Higher Topos Theory”, Annals of Mathematics Studies 170 Princeton University Press, 2009 arXiv:math/0608040
- Louis Martini “Cocartesian fibrations and straightening internal to an ∞\infty∞-topos” In arXiv preprint arXiv:2204.00295, 2022
- Louis Martini “Yoneda’s lemma for internal higher categoriess”, 2021 arXiv: https://arxiv.org/abs/2103.17141
- “Internal higher topos theory” In arXiv preprint arXiv:2303.06437, 2023
- “Limits and colimits in internal higher category theory”, 2022 arXiv: https://arxiv.org/abs/2111.14495
- Erin McCloskey “Relative Weak Factorization Systems”, 2022
- Giuseppe Metere “Distributors and the comprehensive factorization system for internal groupoids” In arXiv preprint arXiv:1701.05139, 2017
- Hoang Kim Nguyen “Theorems in Higher Category Theory and Applications”, 2019 URL: https://epub.uni-regensburg.de/38448/
- Paige Randall North “Towards a Directed Homotopy Type Theory” Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics In Electronic Notes in Theoretical Computer Science 347, 2019, pp. 223–239 DOI: https://doi.org/10.1016/j.entcs.2019.09.012
- Andreas Nuyts “Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance”, 2015 URL: https://anuyts.github.io/files/mathesis.pdf
- Ian Orton and Andrew M. Pitts “Axioms for modelling cubical type theory in a topos” Id/No 24 In 25th EACSL annual conference and 30th workshop on computer science logic, CSL’16, Marseille, France, August 29 – September 1, 2016. Proceedings Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2016, pp. 19 DOI: 10.4230/LIPIcs.CSL.2016.24
- “2-catégories réductibles” In Theory and Applications of Categories Reprints (no. 19, 2010), 1978
- Nima Rasekh “Cartesian fibrations and representability” In Homology, Homotopy and Applications 24.2 International Press of Boston, 2022, pp. 135–161
- Nima Rasekh “Cartesian Fibrations of Complete Segal Spaces” In Higher Structures 7, 2023, pp. 40–73 DOI: https://articles.math.cas.cz/10.21136/HS.2023.03
- Charles Rezk “Stuff about quasicategories”, 2017 URL: https://faculty.math.illinois.edu/~rezk/quasicats.pdf
- Charles Rezk “Toposes and homotopy toposes” Unpublished note. http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf, 2010
- Emily Riehl “Math 721: Homotopy type theory” Course notes, 2021 URL: https://github.com/emilyriehl/721/blob/master/721lectures.pdf
- “A type theory for synthetic ∞\infty∞-categories” In Higher Structures 1.1, 2017, pp. 147–224 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol1Iss1/RiehlShulman
- “Cartesian exponentiation and monadicity”, 2021 arXiv: https://arxiv.org/abs/2101.09853
- “Elements of ∞\infty∞-Category Theory”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2022
- “Fibrations and Yoneda’s lemma in an ∞\infty∞-cosmos” In J. Pure Appl. Algebra 221.3, 2017, pp. 499–564 DOI: 10.1016/j.jpaa.2016.07.003
- “Homotopy coherent adjunctions and the formal theory of monads” In Advances in Mathematics 286, 2016, pp. 802–888 DOI: https://doi.org/10.1016/j.aim.2015.09.011
- “Infinity category theory from scratch” In Higher Structures 4.1, 2020 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/RiehlVerity
- “Kan extensions and the calculus of modules for ∞\infty∞-categories” In Algebr. Geom. Topol. 17.1, 2017, pp. 189–271 DOI: 10.2140/agt.2017.17.189
- “The 2222-category theory of quasi-categories” In Advances in Mathematics 280, 2015, pp. 549–642 DOI: 10.1016/j.aim.2015.04.021
- Egbert Rijke “Introduction to Homotopy Type Theory”, 2020 URL: https://github.com/EgbertRijke/HoTT-Intro
- Jaco Ruit “Formal category theory in ∞\infty∞-equipments I” In arXiv preprint arXiv:2308.03583, 2023
- The sHoTT Community “sHoTT Library in Rzk”, 2024 URL: https://rzk-lang.github.io/sHoTT/
- Michael Shulman “All (∞,1)1(\infty,1)( ∞ , 1 )-toposes have strict univalent universes”, 2019 arXiv: https://arxiv.org/abs/1904.07004
- Michael Shulman “The univalence axiom for elegant Reedy presheaves” In Homology Homotopy Appl. 17.2, 2015, pp. 81–106 DOI: 10.4310/HHA.2015.v17.n2.a6
- Michael Shulman “Univalence for inverse diagrams and homotopy canonicity” In Math. Structures Comput. Sci. 25.5, 2015, pp. 1203–1277 DOI: 10.1017/S0960129514000565
- Michael Shulman “Univalence for inverse EI diagrams” In Homology Homotopy Appl. 19.2, 2017, pp. 219–249 DOI: 10.4310/HHA.2017.v19.n2.a12
- Mike Shulman “An explicit description of cocomma-categories?” version: 2016-08-11, MathOverflow URL: https://mathoverflow.net/q/247311
- Raffael Stenzel “Univalence and completeness of Segal objects” arXiv, 2019 DOI: 10.48550/ARXIV.1911.06640
- Danny Stevenson “Model structures for correspondences and bifibrations” In arXiv preprint arXiv:1807.08226, 2018
- Ross Street “Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Différentielle 21 (1980), no. 2, 111–160; MR0574662 (81f:18028)]” In Cahiers Topologie Géom. Différentielle Catég. 28.1, 1987, pp. 53–56
- Ross Street “Elementary cosmoi. I”, Category Sem., Proc., Sydney 1972/1973, Lect. Notes Math. 420, 134-180 (1974)., 1974
- Ross Street “Fibrations and Yoneda’s lemma in a 2222-category” In Category Seminar (Proc. Sem., Sydney, 1972/1973), 1974, pp. 104–133. Lecture Notes in Math.\bibrangessepVol. 420 DOI: 10.1007/BFb0063102
- Ross Street “Fibrations in bicategories” In Cahiers Topologie Géom. Différentielle 21.2, 1980, pp. 111–160 URL: http://www.numdam.org/article/CTGDC_1980__21_2_111_0.pdf
- Thomas Streicher “A model of type theory in simplicial sets: a brief introduction to Voevodsky’s homotopy type theory” In J. Appl. Log. 12.1, 2014, pp. 45–49 DOI: 10.1016/j.jal.2013.04.001
- Thomas Streicher “Fibered Categories à la Jean Bénabou”, 2022 arXiv: https://arxiv.org/abs/1801.02927
- Andrew Swan “Separating Path and Identity Types in Presheaf Models of Univalent Type Theory”, 2018 arXiv: https://arxiv.org/abs/1808.00920
- The Univalent Foundations Program “Homotopy Type Theory: Univalent Foundations of Mathematics” Institute for Advanced Study: https://homotopytypetheory.org/book, 2013
- Vladimir Voevodsky “A simple type system with two identity types” Unpublished note. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, 2013
- Vladimir Voevodsky “Notes on type systems” Unpublished, https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/expressions_current.pdf, 2009
- Tamara Von Glehn “Polynomials, fibrations and distributive laws” In Theory and Applications of Categories 33.36, 2018, pp. 1111–1144
- Michael Warren “Directed Type Theory” Lecture at IAS, Princeton, 2013 URL: https://www.youtube.com/watch?v=znn6xEZUKNE
- Matthew Z. Weaver and Daniel R. Licata “A Constructive Model of Directed Univalence in Bicubical Sets” In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20 Saarbrücken, Germany: Association for Computing Machinery, 2020, pp. 915–928 DOI: 10.1145/3373718.3394794
- Jonathan Weinberger “A Synthetic Perspective on (∞,1)1(\infty,1)( ∞ , 1 )-Category Theory: Fibrational and Semantic Aspects”, 2022, pp. xxi+177 DOI: https://doi.org/10.26083/tuprints-00020716
- Jonathan Weinberger “Internal sums for synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2022 arXiv:2205.00386 [math.CT]
- Jonathan Weinberger “Strict stability of extension types” arXiv, 2022 DOI: 10.48550/ARXIV.2203.07194
- Nobuo Yoneda “On Ext and exact sequences” In J. Fac. Sci. Univ. Tokyo Sect. I 8.507-576, 1960, pp. 1960
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.