Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Transformer-Empowered Content-Aware Collaborative Filtering (2204.00849v1)

Published 2 Apr 2022 in cs.IR

Abstract: Knowledge graph (KG) based Collaborative Filtering is an effective approach to personalizing recommendation systems for relatively static domains such as movies and books, by leveraging structured information from KG to enrich both item and user representations. Motivated by the use of Transformers for understanding rich text in content-based filtering recommender systems, we propose Content-aware KG-enhanced Meta-preference Networks as a way to enhance collaborative filtering recommendation based on both structured information from KG as well as unstructured content features based on Transformer-empowered content-based filtering. To achieve this, we employ a novel training scheme, Cross-System Contrastive Learning, to address the inconsistency of the two very different systems and propose a powerful collaborative filtering model and a variant of the well-known NRMS system within this modeling framework. We also contribute to public domain resources through the creation of a large-scale movie-knowledge-graph dataset and an extension of the already public Amazon-Book dataset through incorporation of text descriptions crawled from external sources. We present experimental results showing that enhancing collaborative filtering with Transformer-based features derived from content-based filtering outperforms strong baseline systems, improving the ability of knowledge-graph-based collaborative filtering systems to exploit item content information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.