Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph-based Approximate NN Search: A Revisit (2204.00824v1)

Published 2 Apr 2022 in cs.IR

Abstract: Nearest neighbor search plays a fundamental role in many disciplines such as multimedia information retrieval, data-mining, and machine learning. The graph-based search approaches show superior performance over other types of approaches in recent studies. In this paper, the graph-based NN search is revisited. We optimize two key components in the approach, namely the search procedure and the graph that supports the search. For the graph construction, a two-stage graph diversification scheme is proposed, which makes a good trade-off between the efficiency and reachability for the search procedure that builds upon it. Moreover, the proposed diversification scheme allows the search procedure to decide dynamically how many nodes should be visited in one node's neighborhood. By this way, the computing power of the devices is fully utilized when the search is carried out under different circumstances. Furthermore, two NN search procedures are designed respectively for small and large batch queries on the GPU. The optimized NN search, when being supported by the two-stage diversified graph, outperforms all the state-of-the-art approaches on both the CPU and the GPU across all the considered large-scale datasets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.