Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Graph-based Approximate NN Search: A Revisit (2204.00824v1)

Published 2 Apr 2022 in cs.IR

Abstract: Nearest neighbor search plays a fundamental role in many disciplines such as multimedia information retrieval, data-mining, and machine learning. The graph-based search approaches show superior performance over other types of approaches in recent studies. In this paper, the graph-based NN search is revisited. We optimize two key components in the approach, namely the search procedure and the graph that supports the search. For the graph construction, a two-stage graph diversification scheme is proposed, which makes a good trade-off between the efficiency and reachability for the search procedure that builds upon it. Moreover, the proposed diversification scheme allows the search procedure to decide dynamically how many nodes should be visited in one node's neighborhood. By this way, the computing power of the devices is fully utilized when the search is carried out under different circumstances. Furthermore, two NN search procedures are designed respectively for small and large batch queries on the GPU. The optimized NN search, when being supported by the two-stage diversified graph, outperforms all the state-of-the-art approaches on both the CPU and the GPU across all the considered large-scale datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube