Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Various proofs of the Fundamental Theorem of Markov Chains (2204.00784v1)

Published 2 Apr 2022 in math.PR and cs.DS

Abstract: This paper is a survey of various proofs of the so called {\em fundamental theorem of Markov chains}: every ergodic Markov chain has a unique positive stationary distribution and the chain attains this distribution in the limit independent of the initial distribution the chain started with. As Markov chains are stochastic processes, it is natural to use probability based arguments for proofs. At the same time, the dynamics of a Markov chain is completely captured by its initial distribution, which is a vector, and its transition probability matrix. Therefore, arguments based on matrix analysis and linear algebra can also be used. The proofs discussed below use one or the other of these two types of arguments, except in one case where the argument is graph theoretic. Appropriate credits to the various proofs are given in the main text. Our first proof is entirely elementary, and yet the proof is also quite simple. The proof also suggests a mixing time bound, which we prove, but this bound in many cases will not be the best bound. One approach in proving the fundamental theorem breaks the proof in two parts: (i) show the existence of a unique positive stationary distribution for irreducible Markov chains, and (ii) assuming that an ergodic chain does have a stationary distribution, show that the chain will converge in the limit to that distribution irrespective of the initial distribution. For (i), we survey two proofs, one uses probability arguments, and the other uses graph theoretic arguments. For (ii), first we give a coupling based proof (coupling is a probability based technique), the other uses matrix analysis. Finally, we give a proof of the fundamental theorem using only linear algebra concepts.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube