Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

VQTTS: High-Fidelity Text-to-Speech Synthesis with Self-Supervised VQ Acoustic Feature (2204.00768v4)

Published 2 Apr 2022 in eess.AS and cs.SD

Abstract: The mainstream neural text-to-speech(TTS) pipeline is a cascade system, including an acoustic model(AM) that predicts acoustic feature from the input transcript and a vocoder that generates waveform according to the given acoustic feature. However, the acoustic feature in current TTS systems is typically mel-spectrogram, which is highly correlated along both time and frequency axes in a complicated way, leading to a great difficulty for the AM to predict. Although high-fidelity audio can be generated by recent neural vocoders from ground-truth(GT) mel-spectrogram, the gap between the GT and the predicted mel-spectrogram from AM degrades the performance of the entire TTS system. In this work, we propose VQTTS, consisting of an AM txt2vec and a vocoder vec2wav, which uses self-supervised vector-quantized(VQ) acoustic feature rather than mel-spectrogram. We redesign both the AM and the vocoder accordingly. In particular, txt2vec basically becomes a classification model instead of a traditional regression model while vec2wav uses an additional feature encoder before HifiGAN generator for smoothing the discontinuous quantized feature. Our experiments show that vec2wav achieves better reconstruction performance than HifiGAN when using self-supervised VQ acoustic feature. Moreover, our entire TTS system VQTTS achieves state-of-the-art performance in terms of naturalness among all current publicly available TTS systems.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.