Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FairRank: Fairness-aware Single-tower Ranking Framework for News Recommendation (2204.00541v1)

Published 1 Apr 2022 in cs.IR

Abstract: Single-tower models are widely used in the ranking stage of news recommendation to accurately rank candidate news according to their fine-grained relatedness with user interest indicated by user behaviors. However, these models can easily inherit the biases related to users' sensitive attributes (e.g., demographics) encoded in training click data, and may generate recommendation results that are unfair to users with certain attributes. In this paper, we propose FairRank, which is a fairness-aware single-tower ranking framework for news recommendation. Since candidate news selection can be biased, we propose to use a shared candidate-aware user model to match user interest with a real displayed candidate news and a random news, respectively, to learn a candidate-aware user embedding that reflects user interest in candidate news and a candidate-invariant user embedding that indicates intrinsic user interest. We apply adversarial learning to both of them to reduce the biases brought by sensitive user attributes. In addition, we use a KL loss to regularize the attribute labels inferred from the two user embeddings to be similar, which can make the model capture less candidate-aware bias information. Extensive experiments on two datasets show that FairRank can improve the fairness of various single-tower news ranking models with minor performance losses.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.