Papers
Topics
Authors
Recent
2000 character limit reached

Provable concept learning for interpretable predictions using variational autoencoders (2204.00492v3)

Published 1 Apr 2022 in cs.LG and stat.ME

Abstract: In safety-critical applications, practitioners are reluctant to trust neural networks when no interpretable explanations are available. Many attempts to provide such explanations revolve around pixel-based attributions or use previously known concepts. In this paper we aim to provide explanations by provably identifying \emph{high-level, previously unknown ground-truth concepts}. To this end, we propose a probabilistic modeling framework to derive (C)oncept (L)earning and (P)rediction (CLAP) -- a VAE-based classifier that uses visually interpretable concepts as predictors for a simple classifier. Assuming a generative model for the ground-truth concepts, we prove that CLAP is able to identify them while attaining optimal classification accuracy. Our experiments on synthetic datasets verify that CLAP identifies distinct ground-truth concepts on synthetic datasets and yields promising results on the medical Chest X-Ray dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.