Provable concept learning for interpretable predictions using variational autoencoders (2204.00492v3)
Abstract: In safety-critical applications, practitioners are reluctant to trust neural networks when no interpretable explanations are available. Many attempts to provide such explanations revolve around pixel-based attributions or use previously known concepts. In this paper we aim to provide explanations by provably identifying \emph{high-level, previously unknown ground-truth concepts}. To this end, we propose a probabilistic modeling framework to derive (C)oncept (L)earning and (P)rediction (CLAP) -- a VAE-based classifier that uses visually interpretable concepts as predictors for a simple classifier. Assuming a generative model for the ground-truth concepts, we prove that CLAP is able to identify them while attaining optimal classification accuracy. Our experiments on synthetic datasets verify that CLAP identifies distinct ground-truth concepts on synthetic datasets and yields promising results on the medical Chest X-Ray dataset.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.