Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Transformers for 1D Signals in Parkinson's Disease Detection from Gait (2204.00423v1)

Published 1 Apr 2022 in cs.LG

Abstract: This paper focuses on the detection of Parkinson's disease based on the analysis of a patient's gait. The growing popularity and success of Transformer networks in natural language processing and image recognition motivated us to develop a novel method for this problem based on an automatic features extraction via Transformers. The use of Transformers in 1D signal is not really widespread yet, but we show in this paper that they are effective in extracting relevant features from 1D signals. As Transformers require a lot of memory, we decoupled temporal and spatial information to make the model smaller. Our architecture used temporal Transformers, dimension reduction layers to reduce the dimension of the data, a spatial Transformer, two fully connected layers and an output layer for the final prediction. Our model outperforms the current state-of-the-art algorithm with 95.2\% accuracy in distinguishing a Parkinsonian patient from a healthy one on the Physionet dataset. A key learning from this work is that Transformers allow for greater stability in results. The source code and pre-trained models are released in https://github.com/DucMinhDimitriNguyen/Transformers-for-1D-signals-in-Parkinson-s-disease-detection-from-gait.git

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.