Papers
Topics
Authors
Recent
Search
2000 character limit reached

CTAB-GAN+: Enhancing Tabular Data Synthesis

Published 1 Apr 2022 in cs.LG | (2204.00401v1)

Abstract: While data sharing is crucial for knowledge development, privacy concerns and strict regulation (e.g., European General Data Protection Regulation (GDPR)) limit its full effectiveness. Synthetic tabular data emerges as alternative to enable data sharing while fulfilling regulatory and privacy constraints. State-of-the-art tabular data synthesizers draw methodologies from Generative Adversarial Networks (GAN). As GANs improve the synthesized data increasingly resemble the real data risking to leak privacy. Differential privacy (DP) provides theoretical guarantees on privacy loss but degrades data utility. Striking the best trade-off remains yet a challenging research question. We propose CTAB-GAN+ a novel conditional tabular GAN. CTAB-GAN+ improves upon state-of-the-art by (i) adding downstream losses to conditional GANs for higher utility synthetic data in both classification and regression domains; (ii) using Wasserstein loss with gradient penalty for better training convergence; (iii) introducing novel encoders targeting mixed continuous-categorical variables and variables with unbalanced or skewed data; and (iv) training with DP stochastic gradient descent to impose strict privacy guarantees. We extensively evaluate CTAB-GAN+ on data similarity and analysis utility against state-of-the-art tabular GANs. The results show that CTAB-GAN+ synthesizes privacy-preserving data with at least 48.16% higher utility across multiple datasets and learning tasks under different privacy budgets.

Citations (59)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.