Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Robin-Neumann Scheme with Quasi-Newton Acceleration for Partitioned Fluid-Structure Interaction (2204.00371v2)

Published 1 Apr 2022 in cs.CE, cs.NA, and math.NA

Abstract: The Dirichlet-Neumann scheme is the most common partitioned algorithm for fluid-structure interaction (FSI) and offers high flexibility concerning the solvers employed for the two subproblems. Nevertheless, it is not without shortcomings: to begin with, the inherent added-mass effect often destabilizes the numerical solution severely. Moreover, the Dirichlet-Neumann scheme cannot be applied to FSI problems in which an incompressible fluid is fully enclosed by Dirichlet boundaries, as it is incapable of satisfying the volume constraint. In the last decade, interface quasi-Newton methods have proven to control the added-mass effect and substantially speed up convergence by adding a Newton-like update step to the Dirichlet-Neumann coupling. They are, however, without effect on the incompressibility dilemma. As an alternative, the Robin-Neumann scheme generalizes the fluid's boundary condition to a Robin condition by including the Cauchy stresses. While this modification in fact successfully tackles both drawbacks of the Dirichlet-Neumann approach, the price to be paid is a strong dependency on the Robin weighting parameter, with very limited a priori knowledge about good choices. This work proposes a strategy to merge these two ideas and benefit from their combined strengths. The resulting quasi-Newton-accelerated Robin-Neumann scheme is compared to both Robin- and Dirichlet-Neumann variants. The numerical tests demonstrate that it does not only provide faster convergence, but also massively reduces the influence of the Robin parameter, mitigating the main drawback of the Robin-Neumann algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.