Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

NC-DRE: Leveraging Non-entity Clue Information for Document-level Relation Extraction (2204.00255v1)

Published 1 Apr 2022 in cs.CL

Abstract: Document-level relation extraction (RE), which requires reasoning on multiple entities in different sentences to identify complex inter-sentence relations, is more challenging than sentence-level RE. To extract the complex inter-sentence relations, previous studies usually employ graph neural networks (GNN) to perform inference upon heterogeneous document-graphs. Despite their great successes, these graph-based methods, which normally only consider the words within the mentions in the process of building graphs and reasoning, tend to ignore the non-entity clue words that are not in the mentions but provide important clue information for relation reasoning. To alleviate this problem, we treat graph-based document-level RE models as an encoder-decoder framework, which typically uses a pre-trained LLM as the encoder and a GNN model as the decoder, and propose a novel graph-based model NC-DRE that introduces decoder-to-encoder attention mechanism to leverage Non-entity Clue information for Document-level Relation Extraction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube