Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born Machines (2203.17089v2)

Published 31 Mar 2022 in quant-ph and cs.LG

Abstract: Near-term noisy intermediate-scale quantum circuits can efficiently implement implicit probabilistic models in discrete spaces, supporting distributions that are practically infeasible to sample from using classical means. One of the possible applications of such models, also known as Born machines, is probabilistic inference, which is at the core of Bayesian methods. This paper studies the use of Born machines for the problem of training binary Bayesian neural networks. In the proposed approach, a Born machine is used to model the variational distribution of the binary weights of the neural network, and data from multiple tasks is used to reduce training data requirements on new tasks. The method combines gradient-based meta-learning and variational inference via Born machines, and is shown in a prototypical regression problem to outperform conventional joint learning strategies.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.