Quantum simulation of real-space dynamics (2203.17006v3)
Abstract: Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a $d$-dimensional Schr\"{o}dinger equation with $\eta$ particles can be simulated with gate complexity $\tilde{O}\bigl(\eta d F \text{poly}(\log(g'/\epsilon))\bigr)$, where $\epsilon$ is the discretization error, $g'$ controls the higher-order derivatives of the wave function, and $F$ measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on $\epsilon$ and $g'$ from $\text{poly}(g'/\epsilon)$ to $\text{poly}(\log(g'/\epsilon))$ and polynomially improves the dependence on $T$ and $d$, while maintaining best known performance with respect to $\eta$. For the case of Coulomb interactions, we give an algorithm using $\eta{3}(d+\eta)T\text{poly}(\log(\eta dTg'/(\Delta\epsilon)))/\Delta$ one- and two-qubit gates, and another using $\eta{3}(4d){d/2}T\text{poly}(\log(\eta dTg'/(\Delta\epsilon)))/\Delta$ one- and two-qubit gates and QRAM operations, where $T$ is the evolution time and the parameter $\Delta$ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.