Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bot Detection in GitHub Repositories (2203.16997v1)

Published 31 Mar 2022 in cs.SE

Abstract: Contemporary social coding platforms like GitHub promote collaborative development. Many open-source software repositories hosted in these platforms use machine accounts (bots) to automate and facilitate a wide range of effort-intensive and repetitive activities. Determining if an account corresponds to a bot or a human contributor is important for socio-technical development analytics, for example, to understand how humans collaborate and interact in the presence of bots, to assess the positive and negative impact of using bots, to identify the top project contributors, to identify potential bus factors, and so on. Our project aims to include the trained ML classifier from the BoDeGHa bot detection tool as a plugin to the GrimoireLab software development analytics platform. In this work, we present the procedure to form a pipeline for retrieving contribution and contributor data using Perceval, distinguishing bots from humans using BoDeGHa, and visualising the results using Kibana.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.