Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cross-Domain Recommendation to Cold-Start Users via Variational Information Bottleneck (2203.16863v1)

Published 31 Mar 2022 in cs.IR and cs.SI

Abstract: Recommender systems have been widely deployed in many real-world applications, but usually suffer from the long-standing user cold-start problem. As a promising way, Cross-Domain Recommendation (CDR) has attracted a surge of interest, which aims to transfer the user preferences observed in the source domain to make recommendations in the target domain. Previous CDR approaches mostly achieve the goal by following the Embedding and Mapping (EMCDR) idea which attempts to learn a mapping function to transfer the pre-trained user representations (embeddings) from the source domain into the target domain. However, they pre-train the user/item representations independently for each domain, ignoring to consider both domain interactions simultaneously. Therefore, the biased pre-trained representations inevitably involve the domain-specific information which may lead to negative impact to transfer information across domains. In this work, we consider a key point of the CDR task: what information needs to be shared across domains? To achieve the above idea, this paper utilizes the information bottleneck (IB) principle, and proposes a novel approach termed as CDRIB to enforce the representations encoding the domain-shared information. To derive the unbiased representations, we devise two IB regularizers to model the cross-domain/in-domain user-item interactions simultaneously and thereby CDRIB could consider both domain interactions jointly for de-biasing.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.