Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Investigating Modality Bias in Audio Visual Video Parsing (2203.16860v2)

Published 31 Mar 2022 in cs.CV, cs.MM, cs.SD, eess.AS, and eess.IV

Abstract: We focus on the audio-visual video parsing (AVVP) problem that involves detecting audio and visual event labels with temporal boundaries. The task is especially challenging since it is weakly supervised with only event labels available as a bag of labels for each video. An existing state-of-the-art model for AVVP uses a hybrid attention network (HAN) to generate cross-modal features for both audio and visual modalities, and an attentive pooling module that aggregates predicted audio and visual segment-level event probabilities to yield video-level event probabilities. We provide a detailed analysis of modality bias in the existing HAN architecture, where a modality is completely ignored during prediction. We also propose a variant of feature aggregation in HAN that leads to an absolute gain in F-scores of about 2% and 1.6% for visual and audio-visual events at both segment-level and event-level, in comparison to the existing HAN model.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.