Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deformable Video Transformer (2203.16795v1)

Published 31 Mar 2022 in cs.CV

Abstract: Video transformers have recently emerged as an effective alternative to convolutional networks for action classification. However, most prior video transformers adopt either global space-time attention or hand-defined strategies to compare patches within and across frames. These fixed attention schemes not only have high computational cost but, by comparing patches at predetermined locations, they neglect the motion dynamics in the video. In this paper, we introduce the Deformable Video Transformer (DVT), which dynamically predicts a small subset of video patches to attend for each query location based on motion information, thus allowing the model to decide where to look in the video based on correspondences across frames. Crucially, these motion-based correspondences are obtained at zero-cost from information stored in the compressed format of the video. Our deformable attention mechanism is optimised directly with respect to classification performance, thus eliminating the need for suboptimal hand-design of attention strategies. Experiments on four large-scale video benchmarks (Kinetics-400, Something-Something-V2, EPIC-KITCHENS and Diving-48) demonstrate that, compared to existing video transformers, our model achieves higher accuracy at the same or lower computational cost, and it attains state-of-the-art results on these four datasets.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.