Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MAE-AST: Masked Autoencoding Audio Spectrogram Transformer (2203.16691v1)

Published 30 Mar 2022 in eess.AS, cs.AI, cs.CL, cs.LG, and cs.SD

Abstract: In this paper, we propose a simple yet powerful improvement over the recent Self-Supervised Audio Spectrogram Transformer (SSAST) model for speech and audio classification. Specifically, we leverage the insight that the SSAST uses a very high masking ratio (75%) during pretraining, meaning that the vast majority of self-attention compute is performed on mask tokens. We address this by integrating the encoder-decoder architecture from Masked Autoencoders are Scalable Vision Learners (MAE) into the SSAST, where a deep encoder operates on only unmasked input, and a shallow decoder operates on encoder outputs and mask tokens. We find that MAE-like pretraining can provide a 3x speedup and 2x memory usage reduction over the vanilla SSAST using current audio pretraining strategies with ordinary model and input sizes. When fine-tuning on downstream tasks, which only uses the encoder, we find that our approach outperforms the SSAST on a variety of downstream tasks. We further conduct comprehensive evaluations into different strategies of pretraining and explore differences in MAE-style pretraining between the visual and audio domains.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.