Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Error Identification Strategies for Python Jupyter Notebooks (2203.16653v2)

Published 30 Mar 2022 in cs.SE

Abstract: Computational notebooks -- such as Jupyter or Colab -- combine text and data analysis code. They have become ubiquitous in the world of data science and exploratory data analysis. Since these notebooks present a different programming paradigm than conventional IDE-driven programming, it is plausible that debugging in computational notebooks might also be different. More specifically, since creating notebooks blends domain knowledge, statistical analysis, and programming, the ways in which notebook users find and fix errors in these different forms might be different. In this paper, we present an exploratory, observational study on how Python Jupyter notebook users find and understand potential errors in notebooks. Through a conceptual replication of study design investigating the error identification strategies of R notebook users, we presented users with Python Jupyter notebooks pre-populated with common notebook errors -- errors rooted in either the statistical data analysis, the knowledge of domain concepts, or in the programming. We then analyzed the strategies our study participants used to find these errors and determined how successful each strategy was at identifying errors. Our findings indicate that while the notebook programming environment is different from the environments used for traditional programming, debugging strategies remain quite similar. It is our hope that the insights presented in this paper will help both notebook tool designers and educators make changes to improve how data scientists discover errors more easily in the notebooks they write.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.